Search
Research
The mitochondrial single-stranded DNA binding protein is essential for initiation of mtDNA replicationWe report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis.
Research
OmicsVolcano: software for intuitive visualization and interactive exploration of high-throughput biological dataAdvances in omics technologies have generated exponentially larger volumes of biological data; however, their analyses and interpretation are limited to computationally proficient scientists. We created OmicsVolcano, an interactive open-source software tool to enable visualization and exploration of high-throughput biological data, while highlighting features of interest using a volcano plot interface. In contrast to existing tools, our software and user-interface design allow it to be used without requiring any programming skills to generate high-quality and presentation-ready images.
Research
Stepwise maturation of the peptidyl transferase region of human mitoribosomesMitochondrial ribosomes are specialized for the synthesis of membrane proteins responsible for oxidative phosphorylation. Mammalian mitoribosomes have diverged considerably from the ancestral bacterial ribosomes and feature dramatically reduced ribosomal RNAs. The structural basis of the mammalian mitochondrial ribosome assembly is currently not well understood. Here we present eight distinct assembly intermediates of the human large mitoribosomal subunit involving seven assembly factors.
Research
The Vsr-like protein FASTKD4 regulates the stability and polyadenylation of the MT-ND3 mRNAExpression of the compact mitochondrial genome is regulated by nuclear encoded, mitochondrially localized RNA-binding proteins (RBPs). RBPs regulate the lifecycles of mitochondrial RNAs from transcription to degradation by mediating RNA processing, maturation, stability and translation. The Fas-activated serine/threonine kinase (FASTK) family of RBPs has been shown to regulate and fine-tune discrete aspects of mitochondrial gene expression.
Research
Frankenstein Cas9: engineering improved gene editing systemsThe discovery of CRISPR-Cas9 and its widespread use has revolutionised and propelled research in biological sciences.
Research
Multi-omic profiling reveals an RNA processing rheostat that predisposes to prostate cancerProstate cancer is the most commonly diagnosed malignancy and the third leading cause of cancer deaths. GWAS have identified variants associated with prostate cancer susceptibility; however, mechanistic and functional validation of these mutations is lacking.
Research
Molecular basis of translation termination at noncanonical stop codons in human mitochondriaThe genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons.
Research
Murine bone-derived mesenchymal stem cells undergo molecular changes after a single passage in cultureThe rarity of the mesenchymal stem cell (MSC) population poses a significant challenge for MSC research. Therefore, these cells are often expanded in vitro, prior to use. However, long-term culture has been shown to alter primary MSC properties.
Research
Mutational rescue of the activity of high-fidelity Cas9 enzymesProgrammable DNA endonucleases derived from bacterial genetic defense systems, exemplified by CRISPR-Cas9, have made it significantly easier to perform genomic modifications in living cells. However, unprogrammed, off-target modifications can have serious consequences, as they often disrupt the function or regulation of non-targeted genes and compromise the safety of therapeutic gene editing applications.
Research
Mitochondrial mistranslation modulated by metabolic stress causes cardiovascular disease and reduced lifespanChanges in the rate and fidelity of mitochondrial protein synthesis impact the metabolic and physiological roles of mitochondria. Here we explored how environmental stress in the form of a high-fat diet modulates mitochondrial translation and affects lifespan in mutant mice with error-prone or hyper-accurate mitochondrial ribosomes. Intriguingly, although both mutations are metabolically beneficial in reducing body weight, decreasing circulating insulin and increasing glucose tolerance during a high-fat diet, they manifest divergent (either deleterious or beneficial) outcomes in a tissue-specific manner.