Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

OMIP-100: A flow cytometry panel to investigate human neutrophil subsets

This 14-color, 13-antibody optimized multicolor immunofluorescence panel (OMIP) was designed for deep profiling of neutrophil subsets in various types of human samples to contextualize neutrophil plasticity in a range of healthy and diseased states. Markers present in the OMIP allow the profiling of neutrophil subsets associated with ontogeny, migration, phagocytosis capacity, granule release, and immune modulation. 

Research

Angiogenesis-associated pathways play critical roles in neonatal sepsis outcomes

Neonatal sepsis is a major cause of childhood mortality. Limited diagnostic tools and mechanistic insights have hampered our abilities to develop prophylactic or therapeutic interventions. Biomarkers in human neonatal sepsis have been repeatedly identified as associated with dysregulation of angiopoietin signaling and altered arachidonic acid metabolism. 

Research

Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure

Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels.

Research

Complete Genome Sequences of Four Pseudomonas aeruginosa Bacteriophages: Kara-mokiny 8, Kara-mokiny 13, Kara-mokiny 16, and Boorn-mokiny 1

Pseudomonas aeruginosa is an opportunistic pathogen. Here, we report the isolation of four bacteriophages from wastewater. All four bacteriophages belong to the Myoviridae family.

Research

Airway and parenchyma transcriptomics in a house dust mite model of experimental asthma

Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease.

Research

In Vitro primary human airway epithelial whole exhaust exposure

The method outlined in this article is a customization of the whole exhaust exposure method generated by Mullins et al. (2016) using reprogrammed primary human airway epithelial cells as described by Martinovich et al. (2017). It has been used successfully to generate recently published data (Landwehr et al. 2021). The goal was to generate an exhaust exposure model where exhaust is collected from a modern engine, real-world exhaust concentrations are used and relevant tissues exposed to assess the effects of multiple biodiesel exposures.

Research

Exacerbation of chronic cigarette-smoke induced lung disease by rhinovirus in mice

A significant proportion of chronic obstructive pulmonary disease exacerbations are strongly associated with rhinovirus infection (HRV). In this study, we combined long-term cigarette smoke exposure with HRV infection in a mouse model.

Research

The development of a consensus statement for the prescription of powered wheelchair standing devices in Duchenne muscular dystrophy

PURPOSE: To develop a consensus statement for the prescription of a Powered Wheelchair Standing Device (PWSD) in young people with Duchenne muscular dystrophy (DMD). MATERIALS AND METHODS: An international multidisciplinary panel comprising clinicians and users (young people with DMD) along with their parents was consulted. A literature review was undertaken and a Delphi method was utilised to generate consensus statements.

Research

Azithromycin reduces airway inflammation induced by human rhinovirus in lung allograft recipients

Our data illustrate that rhinovirus infection is capable of infecting upper and lower airway epithelial cells, driving cell death and inflammation

Research

Determinants of culture success in an airway epithelium sampling program of young children with cystic fibrosis

Determinants of culture success through retrospective analysis of a program of routinely brushing children with Cystic Fibrosis airway disease