Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D

UVR or sunlight exposure may be an effective means of suppressing the development of obesity and MetS, through mechanisms that are independent of vitamin D

Research

MEIS proteins as partners of the TLX1/HOX11 oncoprotein

Aberrant expression of the TLX1/HOX11 proto-oncogene is associated with a significant subset of T-cell acute lymphoblastic leukemias...

Research

Developing and characterising juvenile models of aggressive paediatric brain cancers for the evaluation of novel immunotherapies.

While profound treatment responses have been realised using immunotherapy for some cancer types, this is yet to be seen for paediatric brain cancer patients.

Research

Tissue resident memory T cells: putting cancer cells to sleep and a target for therapy

Tissue resident memory T cells are cancer killing immune cells that have emerged as key players in immune-mediated control of solid cancers, as well as being markers of prognosis and predictors of response to immunotherapy.

News & Events

Landmark research hopes to increase survival rates for aggressive childhood cancer

A new combination of drugs could help to increase survival rates with fewer side effects for some children with one of the most aggressive forms of childhood brain cancer.

People

Professor Nick Gottardo

Head of Paediatric and Adolescent Oncology and Haematology, Perth Children’s Hospital; Co-head, Brain Tumour Research Program, The Kids Research Institute Australia

Research

A surveillance clinic for children and adolescents with, or at risk of, hereditary cancer predisposition syndromes

Hereditary cancer predisposition syndromes (HCPS) account for at least 10% of paediatric cancers.1 Li‐Fraumeni syndrome (LFS) is a dominant HCPS caused by mutations in the TP53 gene and is associated with an 80–90% lifetime risk of cancer, commencing in infancy.2 Children of affected individuals are at 50% risk of inheriting the family mutation.

Research

Multi-institutional analysis of treatment modalities in basal ganglia and thalamic germinoma

Central nervous system germinomas are treatment-sensitive tumors with excellent survival outcomes. Current treatment strategies combine chemotherapy with radiotherapy (RT) in order to reduce the field and dose of RT. Germinomas originating in the basal ganglia/thalamus have proven challenging to treat given their rarity and poorly defined imaging characteristics. Craniospinal, whole brain, whole ventricle, and focal RT have all been utilized; however, the best treatment strategy remains unclear.

Research

Most clinical anti-EGFR antibodies do not neutralize both wtEGFR and EGFRvIII activation in glioma

We discovered a previously unknown major resistance mechanism in glioma in that most EGFR domain III-targeting antibodies do not neutralize EGFRvIII

Research

Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer

The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations.